

### **7DSM PROJECTS SDN BHD** Since 2013

3 Lintang Kurau 5 Taman Chai Leng 13600 Perai , Pulau Pinang , Malaysia Tel : 604-3998577 / 016 4455789 Contact Person : Ms Khim

#### **OUR SERVICES**





# OUR SERVICES TELECOMMUNICATION WORKS



Tower Preventative Maintenance Foundation Mapping Tower Strengthening Using CFRP



Carbon Fibre Composites Monopoles Supply Smart Pole Supply



# ICES TELECOMMUNICATION WORKS

### **Tower Preventative Maintenance**





- a. To clear vegetation and be able to access within the compound
- b. Standard data sheet for checklist to record tower details
- c. Theodolite to check verticality for guyed mast
- d. Guy wire tension check. Loose guy wires will be tightened with <u>additional cost</u>.
- e. <u>Torque testing</u> & if 10% bolts fails torque test, require to do 100%.
- f. Aircraft warning light inspection only no testing on functionality
- g. Lighting protection system inspection only no testing on functionality









|           | TORQUE/ | BOLTS GRADE | (N.m)     | SAMPLE 1 | SAMPLE 2 |       |
|-----------|---------|-------------|-----------|----------|----------|-------|
|           |         |             |           |          |          |       |
| BOLT SIZE |         |             |           | N.m      | N.m      | REMAR |
|           | 5.6     | 6.8         | 8.8       |          |          |       |
| M12       | 35-40   | 70-75       | 85-90     |          |          |       |
| M14       | 60-65   | 110-115     | 140-145   |          |          |       |
| M16       | 90-95   | 175-180     | 205-215   |          |          |       |
| M20       | 175-180 | 375-380     | 425-435   |          |          |       |
| M24       | 300-310 | 590-595     | 720-730   |          |          |       |
| M30       | 615-620 | 1200-1205   | 1410-1420 |          |          |       |
|           |         |             |           |          |          |       |













#### Reporting will be carried out based on risk assessment which formed using matrix of

- a. Tower Loading
- b. Tower Condition
- c. Business Risk

| RAG Reporting to be used in TPM Reporting |              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |  |  |  |  |  |  |
|-------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| RAG Reporting                             | Significance | Observations from Audit reporting                                                                                                                                                                                                                                                                                                                                                                                                    | Recommended Rectification Timeline         |  |  |  |  |  |  |
| Red Urgent                                | Critical     | Any other findings which refers tower at high risk and it could collapse at<br>anytime. Such as:<br>Strengthening or replacement required for Tower Leg, Guy Wire etc.                                                                                                                                                                                                                                                               | Immediately                                |  |  |  |  |  |  |
| Red                                       | Major        | Any findings which refers tower at high risk and the stability & safety in<br>danger. Such as:<br>Strengthening or replacement required for Tower member, bracing, guy wire<br>shackle & other guy wire accessories.<br>Severe corrosion for leg/guy wire & it's accessories.<br>Major crack found in tower foundation/guy anchor.<br>Major verticality error & tower twist found etc.                                               | Urgently within 3 months from notification |  |  |  |  |  |  |
| Amber                                     | Minor        | Any findings which refers tower at risk and if not rectified soon tower might<br>become risky. Such as:<br>Strengthening or replacement required for tower bolt, missing bolt,<br>cranked/twisted member, improper hole, member tempered, severely<br>corroded bolts/member.<br>Over grown trees/vegetation to guy wire, mark founds for guy wire & anchor<br>goes under water, minor twist & verticality error found for tower etc. | Within 3 to 6 months period                |  |  |  |  |  |  |
| Green                                     | None         | Any findings which refers tower not in risk and if not rectified in gradually<br>tower health will deteriorate in long run. Such as:<br>Mild corrosion, minor rectification for tower health improvement, painting<br>required.                                                                                                                                                                                                      | Within 6 to 12 months period               |  |  |  |  |  |  |
|                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |  |  |  |  |  |  |
|                                           |              |                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |  |  |  |  |  |  |

#### **TPM SITE AUDIT REPORTS**

#### Contents

| 1.  | Introduction                                                |    |
|-----|-------------------------------------------------------------|----|
| 2.  | Site Details                                                |    |
| 3.  | Design Criteria                                             |    |
| 4.  | Capacity and Condition Statement                            |    |
| 5.  | Table of Member Sizes, Bolts and Grades                     |    |
| 6.  | Equipment and Ancillary Loadings                            | 6  |
| 7.  | Structure Line Diagram                                      | 7  |
| 8.  | Equipment Loading Diagram – Existing LOADING                |    |
| 9.  | Summary of Analysis – Existing LOADING                      | 9  |
| 10. | Reaction Summary – Existing LOADING                         |    |
| 11. | Conclusion                                                  |    |
| 12. | Site Observations for Rectifications, Notes and Assumptions | 13 |

Appendix A Tower and Compound Drawings

Appendix B Results Summary



#### 6. Equipment and Ancillary Loadings

| Existing Equipment table |     |     |             |               |       | Site Au                  | dit Date:                | 05/09/2017     |       |                |               |
|--------------------------|-----|-----|-------------|---------------|-------|--------------------------|--------------------------|----------------|-------|----------------|---------------|
| Equipment<br>Type        | No. | L   | Dimens<br>W | ions [m]<br>D | dia   | FPA<br>[m <sup>2</sup> ] | EPA<br>[m <sup>2</sup> ] | Weight<br>[kg] | Leg   | Angle<br>(deg) | Height<br>(m) |
| Panel Antenna            | 1   | 2.6 | 0.26        | 0.09          |       | 0.67                     | 1.33                     | 20             | A     | 60             | 82.50         |
| Panel Antenna            | 3   | 2.6 | 0.26        | 0.09          |       | 2.00                     | 3.99                     | 60             | A/B/C | 0/180/300      | 82.50         |
| Panel Antenna            | 3   | 1.4 | 0.17        | 0.08          |       | 0.70                     | 1.40                     | 21             | A/B/C | 0/180/260      | 53.80         |
| MW Dish<br>A07S18HD      | 1   |     |             |               | 1.80  | 2.54                     | 3.21                     | 127            | В     | 210            | 77.00         |
| MW Dish                  | 1   |     |             |               | 2.40  | 4.52                     | 5.70                     | 172            | В     | 210            | 74.00         |
| MW Dish<br>A07S18HAC     | 1   |     |             |               | 1.80  | 2.54                     | 3.21                     | 98             | A     | 20             | 72.50         |
| MW Dish<br>A07S18HAC     | 1   |     |             |               | 1.80  | 2.54                     | 3.21                     | 98             | A     | 20             | 65.00         |
| RRU                      | 3   | 0.4 | 0.30        | 0.20          |       | 0.36                     | 0.72                     | 63             | A/B/C | 0/180/300      | 82.20         |
| RRU                      | 3   | 0.4 | 0.30        | 0.20          |       | 0.36                     | 0.72                     | 63             | A/B/C | 0/180/300      | 81.50         |
| RRU                      | 3   | 0.4 | 0.30        | 0.20          |       | 0.36                     | 0.72                     | 63             | A/B/C | 0/180/260      | 52.50         |
|                          |     |     |             |               | Total | 16.60                    | 24.20                    | 785.0          |       |                |               |

\* Heights of equipment are measured to the base of the antenna's and the mid-point of the dishes\* \* Additional equipment marked as **bold** text

Note: Feeders: 2no. 7/8" dia. per Panel Antenna (up to 76m), 2no. 1 5/8" dia. per Panel Antenna (above 76m), 1no. 1/4"mm dia. per MW Dish and other antennas. FPA – Flat Panel Aree acliculated as 1 x W for panels; n x 0/4 for Dishes.

EPA – FIAL Function and Calculated as  $L \times W$  for panels,  $R \times D^{-}/4$  for Disnes. EPA – FPA x Cd. Cd = 2.0 for Panels; Cd = 1.26 for Disnes



#### **TPM SITE AUDIT REPORTS**

#### 5. Table of Member Sizes, Bolts and Grades

#### Plan Bracing and Anti-Twist Frames

| egs, Bracin<br>ections are | g & Horizontals<br>from No. 1 at the bot | ttom of the str | ructure upwards [re | efer to diagram | n]:         |          | Section | Plan Bracing<br>Type / Size | Plan<br>Bracing<br>Bolts | Frame<br>(Diagonal)<br>Type / Size | Frame<br>(Diagonal)<br>Bolts | Frame<br>(Horizontal)<br>Type / Size | Frame<br>(Horizontal)<br>Bolts |
|----------------------------|------------------------------------------|-----------------|---------------------|-----------------|-------------|----------|---------|-----------------------------|--------------------------|------------------------------------|------------------------------|--------------------------------------|--------------------------------|
| Section                    | Leg Type / Size                          | Leg             | Bracing Type        | Bracing         | Horizontal  | Horizont | 1       |                             |                          |                                    |                              |                                      |                                |
| occuon                     | cos ()pe / one                           | Bolts           | / Size              | Bolts           | Type / Size | Bolts    | 2       |                             |                          |                                    |                              |                                      |                                |
| 1                          | CHS76.1x4.5                              | n/a             | ROD19.0             | n/a             | FLAT150x15  | n/a      | 3       |                             |                          |                                    |                              |                                      |                                |
| 2                          | CHS76.1x4.5                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 4       |                             |                          |                                    |                              |                                      |                                |
| 3                          | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 5       |                             |                          |                                    |                              |                                      |                                |
| 4                          | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 6       |                             |                          |                                    |                              |                                      |                                |
| 5                          | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 7       |                             | Guy Wire                 | s                                  | -                            |                                      |                                |
| 6                          | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 8       |                             |                          |                                    |                              |                                      |                                |
| 7                          | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 9       |                             | Level                    | Height [m]                         | Wire Ty                      | pe -                                 |                                |
| 8                          | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 10      |                             | 1                        | 19                                 | 3 no. 8m                     | im –                                 |                                |
| 9                          | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 11      |                             | 2                        | 37                                 | 3 no 8m                      |                                      |                                |
| 10                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 12      | <u>.</u>                    | 2                        | 57                                 | 5110, 01111                  |                                      |                                |
| 11                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 12      |                             | 5                        | 52                                 | 6 no. 8mm                    |                                      |                                |
| 12                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 14      |                             | 4                        | 70                                 | 6 no. 8mm –                  |                                      |                                |
| 13                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 14      |                             | 5                        | 82                                 | 6 no. 13mm -                 |                                      |                                |
| 14                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 15      |                             |                          |                                    | 1                            |                                      |                                |
| 15                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 10      |                             |                          |                                    |                              |                                      |                                |
| 16                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 17      | 2                           | -                        |                                    | -                            |                                      |                                |
| 17                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 18      |                             |                          | EA65x65x10                         | 2 M16                        | PFC125x65x15                         | 2 M16                          |
| 18                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 19      |                             |                          |                                    |                              |                                      |                                |
| 19                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 20      |                             |                          |                                    |                              |                                      |                                |
| 20                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 21      |                             |                          |                                    |                              |                                      |                                |
| 21                         | CH\$76.1x4.0                             | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 22      |                             |                          |                                    |                              |                                      |                                |
| 22                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 23      |                             |                          |                                    |                              |                                      |                                |
| 23                         | CHS76.1x4.0                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 24      |                             |                          | EA65x65x10                         | 2 M16                        | PFC125x65x15                         | 2 M16                          |
| 24                         | CHS60.3x4.5                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 25      |                             |                          |                                    |                              |                                      |                                |
| 25                         | CHS60.3x4.5                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 26      |                             | -                        |                                    |                              |                                      |                                |
| 26                         | CHS60.3x4.5                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 27      |                             |                          |                                    | 1                            |                                      |                                |
| 27                         | CHS60.3x4.5                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 28      |                             | -                        | E465x65x10                         | 2 M16                        | PEC125x65x15                         | 2 M16                          |
| 28                         | CHS60.3x4.5                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 20      |                             | -                        | CHOSKOSKIU                         | 2 11120                      | TTCIESKOSKIS                         | 2 11120                        |
| 29                         | CHS60.3x4.5                              | 4 M12           | ROD19.0             | n/a             | ROD19.0     | n/a      | 23      | and a shine the second of   |                          | -                                  |                              |                                      | L                              |

8. Equipment Loading Diagram - Existing LOADING

DSA

(DS) - denotes double shear bolts

(\*) - denotes double EAs not adequately connected

Steel grade for all EA120x120 members and greater assumed as grade 325, all others assumed as grade 235 Bolt grade of bolts as per section 3 unless stated otherwise in the table above

n/a (DS) – denotes double shear bolts

(\*) - denotes double EAs not adequately connected

Steel grade for all EA120x120 members and greater assumed as grade 325, all others assumed as grade 235 Bolt grade of bolts as per section 3 unless stated otherwise in the table above

#### **TPM SITE AUDIT REPORTS**

#### 9, Summary of Analysis - Existing LOADING

| verall Mem    | ber Capacities  | 6         |         |               | Stress %   | Status              |
|---------------|-----------------|-----------|---------|---------------|------------|---------------------|
| Aaximum Le    | g Stress Ratio  | 201%      | FAIL    |               |            |                     |
| Aaximum Bra   | acing Stress Ra | 273%      | FAIL    |               |            |                     |
| Aaximum Gu    | wire Stress     | Ratio     |         |               | 174%       | FAIL                |
| verall Bolt ( | Capacities      |           |         |               |            |                     |
| Aaximum Le    | g Bolt Stress R | atio      |         |               | 95%        | PASS                |
| Maximum Bra   | acing Bolt Stre | ss Ratio  |         |               | 86%        | PASS                |
| Section       | Leg             | Leg Bolts | Bracing | Bracing Bolts | Horizontal | Horizontal<br>Bolts |
| 1             | 115%            | 0%        | 79%     |               | 29%        |                     |
| 2             | 104%            | 0%        | 80%     |               | 17%        |                     |
| 3             | 118%            | 0%        | 80%     | _             | 17%        |                     |
| 4             | 124%            | 0%        | 89%     |               | 20%        |                     |
| 5             | 139%            | 0%        | 100%    |               | 22%        |                     |
| 6             | 158%            | 0%        | 108%    |               | 23%        |                     |
| 7             | 180%            | 0%        | 115%    |               | 29%        |                     |
| 8             | 181%            | 0%        | 92%     |               | 18%        |                     |
| 9             | 175%            | 0%        | 84%     |               | 16%        |                     |
| 10            | 170%            | 0%        | 74%     |               | 15%        |                     |
| 11            | 170%            | 0%        | 80%     |               | 18%        |                     |
| 12            | 174%            | 0%        | 98%     |               | 22%        |                     |
| 13            | 181%            | 0%        | 113%    |               | 35%        |                     |
| 14            | 179%            | 0%        | 143%    |               | 29%        |                     |
| 15            | 146%            | 0%        | 131%    |               | 25%        |                     |
| 16            | 119%            | 0%        | 115%    | -             | 22%        |                     |
| 17            | 107%            | 0%        | 98%     |               | 19%        |                     |
| 18            | 107%            | 0%        | 94%     | 45%           | 65%        |                     |
| 19            | 96%             | 0%        | 273%    | -             | 94%        |                     |
| 20            | 121%            | 29%       | 223%    |               | 77%        |                     |
| 21            | 152%            | 65%       | 196%    |               | 61%        |                     |
| 22            | 174%            | 87%       | 164%    |               | 46%        |                     |
| 23            | 179%            | 92%       | 129%    |               | 25%        |                     |
| 24            | 201%            | 87%       | 121%    | 64%           | 39%        |                     |
| 25            | 169%            | 94%       | 194%    |               | 50%        | <u> </u>            |
| 26            | 171%            | 95%       | 135%    |               | 46%        |                     |
| 27            | 150%            | 72%       | 179%    |               | 122%       | 10, Reaction        |
| 28            | 112%            | 22%       | 185%    | 86%           | 90%        |                     |
| 20            | 10%             | 1 404     | 11110   |               | 104        | Maximum Reaction    |

Location

Mast foundation

1st Stay Block

2nd Stay Block

**3rd Stay Block** 

#### **Guy Wire Capacities**

| Stay Level | Stress Ratio |
|------------|--------------|
| 1          | 105%         |
| 2          | 140%         |
| 3          | 174%         |
| 4          | 162%         |
| 5          | 113%         |



# OUR SERVICES TELECOMMUNICATION WORKS



**Foundation Mapping** 



#### **FOUNDATION MAPPING**



TPM analysis report showed some tower as highly overstressed in leg members with their actual loading condition.

**Enviromental issues- flooding** 

Design issues – tower foundation designed to wrong Exposure & Windspeed

Commercial issues - Additional EPA required on some towers  $\rightarrow$  Increase in tower weight and resultant forces at times

Hence, existing foundation capacity needs to be checked



### **Steps of Foundation Audit**

### 1. <u>Reviewing the Existing Conditions</u>

- Original Tower Foundation Design
- Original Soil Investigation Report

# 2. Obtaining Information from the Site

- Check existing foundation use Ground Penetrating Radar/ to carry out excavation if possible.
- Foundation System Used Isolated / Raft / Pile
- Evidence of Settlement Cracks or visible Distress
- Instrusive & Non-Destructive Tests
  - Schmidt Rebound Hammer (Concrete Strength)
  - Ultrasonic Pulse Velocity Test (Concrete Quality
  - Core Tests (Concrete quality and Strength)
  - Rebar Scanner (rebar quantity)
  - Pile integrity test (for pile length)





# **Steps of Foundation Audit** 3. <u>Assessment based on findings from site</u>

- Initial Calculations
- Identification of potential weakness of foundation (if any)
- Preliminary Analysis Report will contain the analysis and recommendation of consultant about Strengthening.

#### 4. <u>Strengthening Methodology</u>

- Underpinning
- Foundation enlargement
- Concrete column jacketing
- Carbon fibre wrap







#### **CONCRETE COLUMN JACKETING**







#### **ENLARGING EXISTING FOUNDATION**





Excavating around the footing.





hardening the surface and installing the dowels.



Photo 15. Installing the main steel.



Photo 16. Completing the jacket.

### **UNDERPINNING FOUNDATION**







#### **CARBON FIBRE REINFORCED POLYMER**









## **OUR SERVICES**



### **TELECOMMUNICATION WORKS**





#### **PIONEER IN WORLD TO USE CFRP FOR STRENGTHENING WORKS**







### **PIONEER IN WORLD TO USE CFRP FOR STRENGTHENING WORKS**



DSM

# OUR SERVICES TELECOMMUNICATION WORKS





# CARBON FIBRE COMPOSITES MONOPOLE SUPPLY





- a. Lower Installation Cost (20 30 % difference )
- b. Less Weight Compared to Steel (80% lighter compared to equivalent)
- c. Less Environmental Effect (recyclable materials)
- d. Non Corrosive



#### **MODULAR SECTION**

Variable height between 9m to 30m (depending on MNO)

Windspeed designed to 50 m/s

EPA 10-20 sq.m (depends on MNO)

| 40°2 | <u>© 0.159</u>     | Ë | DSM |
|------|--------------------|---|-----|
|      | ¢ <sup>0.665</sup> |   |     |









# OUR SERVICES TELECOMMUNICATION WORKS



# **SMART POLE SUPPLY**



#### 20m SINGLE ARM SMART POLE

- a. FOR SMART CITY USAGE
- b. Designed based on TIA -222G
- c. 3sec Gust windspeed 120km/hr Topography Cat 1 ; Terrain Cat 3
- d. 2.5 sq.m spread within top 5m for Class 02
- e. 5.0 sq.m EPA for 6.0m level for Advertisement Panel
- f. Cabling and Light arm ( by others )













# **CONSTRUCTION WORKS**





























